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Abstract. The difference of vector and axial-vector charged current correlators is analyzed by means of
QCD sum rules. The contribution of 10-dimensional 4-quark condensates is calculated and its value is
estimated within the framework of the factorization hypothesis. It is compared to the result obtained
from an operator fit of Borel sum rules in the complex q2-plane, calculated from experimental data on
hadronic τ -decays. This fit gives accurate values of the light quark condensate and the quark–gluon mixed
condensate. The size of the high-order operators and the convergence of the operator series are discussed.

1 Introduction

The QCD sum rules [1] have been widely used for the
determination of the fundamental theoretical parameters,
such as the coupling constant αs, quark masses and various
non-perturbative condensates. Their accuracy depends on
experimental errors and theoretical uncertainties. In many
cases both experimental and theoretical errors are compa-
rable by the order of magnitude, and any improvement is
of interest.

In this paper we will consider the 2-point correlators of
charged vector and axial-vector currents, constructed from
light u, d-quarks:

ΠU
µν(q) = i

∫
dx eiqx

〈
TU†

µ(x)Uν(0)
〉

(1)

= (qµqν − gµνq2) Π
(1)
U (q2) + qµqν Π

(0)
U (q2),

where

U = V, A : Vµ = ūγµd , Aµ = ūγµγ5d .

The polarization functions Π(i)(s) have a cut along the
real axes in the complex s = q2-plane. Their imaginary
parts (spectral functions),

v1/a1(s) = 2π Im Π
(1)
V/A(s + i0) ,

a0(s) = 2π Im Π
(0)
A (s + i0), (2)

have been measured for 0 < s < m2
τ by the ALEPH [2]

and OPAL [3] collaborations from hadronic decays of the
τ -lepton.

Of particular interest is the difference Π
(1)
V −Π

(1)
A , since

it does not contain any perturbative contribution in the
massless quark limit. The experimental data on the differ-
ence v1(s) − a1(s) are shown in Fig. 1. As demonstrated
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Fig. 1. Spectral function v1(s)−a1(s) obtained from ALEPH [2]
and OPAL [3] data

in [4], the dispersion relation can be written in the follow-
ing form:

Π
(1)
V (s)−Π

(1)
A (s) =

1
2π2

∫ ∞

0

v1(t)− a1(t)
t− s

dt +
f2

π

s

=
∑
D≥4

OV −A
D

(−s)D/2 , (3)

where the sum goes over even dimensions D of the oper-
ators (condensates) OD. The term f2

π

s (fπ = 130.7 MeV is
the pion decay constant) is the kinematical pole of the axial
polarization function ΠA

µν ; see [4] for details. In (3) and be-
low the notation OV −A

D stands for the condensates with all
αs corrections, including slowly varying logarithmic terms
∼ lnn(−s). The list of the condensate contributions to the
vector and axial correlators separately can be found in [5].
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The sum rules for the difference (3) have been studied
in [4,6–12] where the lowest order condensates OV −A

D were
found. Although the published values of OV −A

6 are close
to each other (within the errors), this is not the case for
the operator OV −A

8 . In [4, 6] positive values of the D = 8
condensate were found, but the authors of recent publica-
tions [9, 12] have obtained a negative condensate OV −A

8 .
The source of this discrepancy could be very large con-
densates of dimension D = 10 and higher, accounted for
in [9,12]: a typical ratio of the condensates in these papers
is |O2n+2/O2n| ∼ 5–10 GeV2. If this statement is correct,
the OPE analysis of [4] would be invalid, because the con-
tribution of unknown high-order terms was estimated from
the assumption |O10/O6| � 1–2 GeV4. For this reason it
would be interesting to find the operator OV −A

10 indepen-
dently and compare it with the sum rule results.

In this paper we repeat the analysis of [4] with the
D = 10 operator included. In Sect. 2 all necessary V –A
operators, obtained from the operator product expansion
in QCD, are listed and their values are estimated within the
framework of the factorization hypothesis. In Sect. 3 the
operator values are obtained from the fit to the Borel sum
rules. In the last section the validity of our assumptions
is discussed and the results are compared with the ones
obtained in other publications. The complete form of the
D = 10 operator and technical details of its derivation are
postponed to Appendices A and B.

2 V –A operator expansion

The first term in the operator series (3) is the D = 4
operator:

OV −A
4 = 2(mu + md)〈q̄q〉 (4)

×
[
1 +

4
3

αs(Q2)
π

+
59
6

(
αs(Q2)

π

)2
]

,

where Q2 = −q2, and we assume 〈ūu〉 = 〈d̄d〉 ≡ 〈q̄q〉.
The αs corrections have been computed in [13,14]. In fact,
the contribution of the D = 4 operator to the sum rules
considered here is small. So we can safely neglect the αs
corrections in (4) and put OV −A

4 = −f2
πm2

π = −3.3 ×
10−4 GeV4, as follows from the Gell-Mann–Oakes–Renner
low energy theorem [15].

The D = 6 operator in factorized form is equal to

OV −A
6 = −8πCNαs〈q̄q〉2

[
1 +

αs(µ2)
π

(
c6 − 1

4
ln

Q2

µ2

)]
,

(5)
where CN = 1 − N−2

c = 8/9 is the color factor, which
appears in the factorization of the 4-quark operators at the
leading αs order. The NLO terms were computed in [16]
and the constant c6 was found to be equal to 247/48.
In [17] another treatment of the γ5 matrix in dimensional
regularization was employed, leading to c6 = 89/48. For
the latter choice at µ = 1 GeV and αs(µ2) = 0.5 one finds
the factor in square brackets in (5) to be equal to 1.3

Fig. 2. Condensate expansion (8) by the number of quarks in
vacuum. Circles stand for the currents V/A, crosses are quarks
in vacuum; gluons in vacuum are not shown

(the logarithmic term can be neglected due to the small
numerical coefficient).

The contribution of the D = 8 4-quark condensates to
the vector current correlator was originally obtained in [18]
in factorized form and in [19] in complete (non-factorized)
form. In [4] these results were verified and an ambiguity
of the factorization at the N−2

c order was pointed out.
Here we will follow the factorization procedure, described
in Appendix B. The result is1

OV −A
8 = 8πCNαsm

2
0〈q̄q〉2, (6)

where themassm0 is defined from the 5-dimensional quark–
gluon mixed condensate:

i〈q̄Ĝq〉 = 2〈q̄D2q〉 = −m2
0〈q̄q〉, (7)

where Ĝ = γαγβGαβ , Gαβ = i[Dα, Dβ ] is the gluon field
strength; see Appendix A for more definitions. The param-
eter m2

0 has the meaning of a typical momentum of virtual
quarks in vacuum. It was found from baryonic sum rules
that m2

0 = 0.8±0.2 GeV2 [20,21], and also the B–B∗ split-
ting was found [22]. The values close to 1 GeV2 were also
obtained from the latest lattice calculation [23] and in the
QCD string model [24].

There are many different condensates of dimension D =
10. They can be grouped into four parts:

OV −A
10 = O

(0)
10 + O

(2)
10 + O

(4)
10 + O

(6)
10 , (8)

where the upper index (i) denotes the number of quarks
in vacuum. This separation is shown diagrammatically in
Fig. 2. The purely gluonic operators O(0) and the 2-quark
ones O(2) cancel in the V –A correlator in the limit of mass-
less u, d-quarks. The operators with six quarks in vacuum
have the structure 〈(q̄q)2(q̄Dq)〉. After factorization they
become∼ m〈q̄q〉3, which is again negligible for light quarks.
The only essential contribution to the V –A sum rules comes
from the 4-quark operators O

(4)
10 .

In this paper we have computed the contribution of the
4-quark condensates to the vector and axial current cor-
relator. Details of the calculation and the complete form
of the operator O

(4)
10 are given in Appendix A. The factor-

ization scheme necessary to reduce the large number of
independent structures is described in Appendix B. The
result is

OV −A
10 = παsCN (9)

×
[

50
9
〈q̄Ĝq〉2 − 16

(
3 X1 −X2 + X3 +

7
6

X4

)
〈q̄q〉

]
,

1 In [4] the factor CN was ignored, since O(N−2
c ) terms

were neglected.
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where Xi are four independent D = 7 quark–gluon con-
densates:

X1 = 〈q̄GαβGαβq〉, X2 = i〈q̄γ5GαβG̃αβq〉,
X3 = 〈q̄γαβGαγGβγq〉, X4 = i〈q̄γαβ(DαJβ)q〉,

(10)

where G̃αβ is the dual gluon field strength, γαβ = 1
2 (γαγβ−

γβγα) and Jα = DβGαβ . Their numerical values are not
known. The condensate X4 can be brought to the 4-quark
form X4 ∼ 〈(q̄q)(q̄Dq)〉 ∼ m〈q̄q〉2, which is negligible. In
order to estimate other condensates, we assume further
factorization according to 〈q̄Γ q〉 = 〈q̄q〉 〈tr Γ 〉/(4Nc); the
trace is taken both over color and spinor indices. Then

X1 =
2π
3

αs
〈
Ga

αβGa
αβ

〉 〈q̄q〉 , X2 = X3 = X4 = 0 .

(11)
Under these assumptions the operator (9) takes the form

OV −A
10 = −παsCN 〈q̄q〉2

[
50
9

m4
0 + 32παs

〈
G2〉] . (12)

It is rather difficult to find an accurate value of the gluon
condensate from any sum rule. The detailed analysis of
the charmonium sum rules performed in [25] has led to the
restriction 〈 αs

π G2〉 = 0.009 ± 0.007 GeV4, in agreement
with many previous estimations. Taking this central value
and m2

0 = 1 GeV2, one obtains OV −A
10 /OV −A

6 = 0.8 GeV4.
For OV −A

6 = −(6.8 ± 2.1) × 10−3 GeV6 [4] we find the
following estimation of the D = 10 V –A condensate:

OV −A
10 = −5× 10−3 GeV10. (13)

In the next section we will compare this estimation with
results of the fit, obtained from the sum rules.

3 V –A sum rules

Many different sum rules have been investigated in order to
determine the numerical values of the condensates. Most
of the authors employ polynomial sum rules: the correlator
Π

(1)
V (s) − Π

(1)
A (s) is multiplied on some polynomial of s

and then integrated over the circle |s| = s0 in the complex
s-plane. The advantages are
(1) one does not need to know the spectral function v1(s)−
a1(s) for s > s0, which allows one to reduce the high error
from the region s ≈ m2

τ by choosing s0 reasonably below
m2

τ , and
(2) all operators of dimension higher than the polynomial
dimension do not enter these sum rules due to the Cauchy
theorem. But the disadvantages are also obvious. If the op-
erator expansion (3) is divergent (asymptotic), the Cauchy
theorem is not applicable to this series. Moreover, possible
logarithmical terms ∼ lnkQ2/Q2n appear at the NLO in
the αs expansion. These terms contribute to any polyno-
mial sum rules. It makes uncontrollable the contribution
of the high-order operators to the polynomial sum rules at
s0 � 2 GeV2, especially for large ones as obtained in [9,12].

For these reasons we prefer Borel sum rules, where the
high-order operators are suppressed as O2n/n!. In order to
separate out the contributions of different operators from
each other, one may consider the Borel transformation in
the complex plane of the Borel mass M2 → M2ei(π−φ)

(which is equivalent to the Borel operator applied to the
dispersion relation (3) written along the ray s → seiφ in
the complex s-plane [4]). The real and imaginary parts of
the Borel transformation are∫ sm

0
exp

( s

M2 cos φ
)

cos
( s

M2 sin φ
)

×(v1 − a1)(s)
ds

2π2

= f2
π +

∞∑
k=1

(−)k
cos (kφ)OV −A

2k+2

k!M2k
, (14)

∫ sm

0
exp

( s

M2 cos φ
)

sin
( s

M2 sin φ
)

×(v1 − a1)(s)
ds

2π2M2

=
∞∑

k=1

(−)k
sin (kφ) OV −A

2k+2

k!M2k+2 . (15)

We made the imaginary part (15) dimensionless, while the
real part (14) has dimension GeV2 in order to separate
out the leading constant term f2

π . The logarithmical terms
are neglected in the RHS of (14) and (15), otherwise the
terms∼ lnM2 appear. The only known logarithmical term
is in the αs correction to the D = 6 operator (5). It can
be easily taken into account (see [9] for explicit formulae),
but its relative contribution is negligible due to the small
numerical factor, so we shall ignore it.

The derivation of (14) and (15) from the dispersion rela-
tion (3) implies an infinite upper integration limit sm =∞.
Experimental data on the axial function a1(s) are avail-
able only for s < m2

τ = 3.16 GeV2. However, the data
at s > 3 GeV2 are rather unstable and have a large er-
ror because of low statistics; see Fig. 1. For this reason
we put sm = 3.0 GeV2 in (14) and (15). Removal of the
data above this point does not change the Borel transform
significantly (if M2 is not sufficiently large), but may re-
duce the errors. In fact, the sum rules considered here do
not rely on the high-energy data: say, if the upper inte-
gration limit sm is reduced to 2.5 GeV2, the condensates
change at most within the 10% limit. If the data above
3 GeV2 are removed, both ALEPH and OPAL data give
almost equal central values and similar errors of the Borel
transforms (14) and (15). For this reason we will present
below the analysis of the ALEPH data only, since they have
smaller errors. The condensates obtained from the OPAL
data are almost the same.

The argument of the exponentmust be negative, cosφ <
0, in order to suppress the contribution of the high-energy
states from the unknown region s > m2

τ , which means
π/2 < φ < π. Of special interest are the angles closest to π
(minimal error), at which the contribution of some operator
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Table 1. Operator fit obtained from (15) for different angles φ; the
operators are in 10−3 GeVD. The last two lines contain combined fits for
all these angles for the upper/lower choice of the M2 range

φ M2, GeV2 OV −A
6 OV −A

8 OV −A
10 χ2

0

2π/3 0.4–1.0
0.5–1.0

−7.0 ± 1.4
−7.0 ± 2.5

−3.8 ± 3.3
−3.9 ± 10.3

0.14
0.14

3π/4 0.4–1.0
0.5–1.0

−7.3 ± 1.1
−7.9 ± 2.3

8.0 ± 2.1
9.5 ± 2.5

0.17
0.12

4π/5 0.3–1.0
0.4–1.0

−8.1 ± 1.8
−9.3 ± 5.1

10.3 ± 4.1
13.8 ± 15.1

−7.6 ± 5.0
−13.2 ± 23.8

0.11
0.06

all −7.2 ± 1.2
−7.5 ± 2.3

7.8 ± 2.5
8.6 ± 6.0

−4.4 ± 2.8
−5.2 ± 8.4

0.40
0.20

O2k+2 vanishes. Such angles are φ = π(2k − 1)/(2k), k =
2, 3, . . . for the real part (14) and φ = π(k − 1)/k, k =
3, 4, . . . for the imaginary one (15). The sum rules (14)
and (15) at some of these angles were considered in [4],
with the operators O6 and O8 as free parameters to fit.
It was shown that for OV −A

6 = −(6.8± 2.1)× 10−3 GeV6

and OV −A
8 = (7 ± 4) × 10−3 GeV6 they are well satisfied

for M2 > 0.6 GeV2.
It is more difficult to find high-order condensates (say

OV −A
10 ) from the sum rules, since several unknown param-

eters enter the same equation and the high-order conden-
sate strongly depends on the exact values of the low-order
ones. Here one needs to consider the Borel transformation
at several values of M2, where the relative contributions of
various condensates are different. In other words, we may
fit the shape of the theoretical curve with an experimen-
tal one within some reasonable region M2

1 < M2 < M2
2 .

For this purpose it is natural to define the least square
deviation, normalized to experimental error:

χ2 =
1

M2
2 −M2

1

∫ M2
2

M2
1

dM2
(

Btheor −Bexp

∆Bexp

)2

(16)

where Btheor/Bexp is the right/left hand side of the Borel
sum rules (14) and (15). One may calculate χ2 with the the-
oretical condensates Oi as free parameters. It is a quadratic
function of them:

χ2 = χ2
0 +

∑
i,j

Cij

(
Oi −Oi

) (
Oj −Oj

)
. (17)

Obviously Oi are the central values of the condensates.
According to the definition (16) it is natural to consider
the equation χ2 = 1 as the one which determines the
border of the 1σ deviation area in the parameter space.
Diagonalizing the matrix Cij by means of an orthogonal
rotation we conclude that Cij is inverse to the covariance
matrix ∆Oi ·∆Oj = (C−1)ij . For a good fit χ2

0 � 1.
The fit results depend on the Borel mass limits M2

1,2

in (16). For M2 > 1 GeV2 the experimental errors are large,
so we take M2

2 = 1 GeV2. The lower limit M2
1 depends

on the size of the neglected high-order operators. In [4] a
good coincidence of experimental and theoretical curves

was observed for M2 > 0.6 GeV2. Here we include the
operator O10 in the analysis, so this value can be slightly
reduced. As follows from our calculation of the 4-quark
condensates (5), (6) and (12), it is reasonable to assume
O2n+2/O2n ∼ m2

0 ≈ 0.7 GeV2. It leads to an estimation
|OV −A

12 | ∼ 3×10−3 GeV−12, which allows us to take M2
1 =

0.4 GeV2, where a typical contribution of such an operator
is not higher than 20%.At the angleswhere the contribution
of the operator O12 vanishes, the Borel mass can be reduced
even further, say, to M2

1 = 0.3 GeV2. All these assumptions
are confirmed by the results of the fit; see the figures below.

The condensates, obtained from real part of Borel trans-
formation (14) are sensitive to the exact value of fπ. For
this reason we shall use the imaginary part (15) for the nu-
merical fit. The best angles are φ = 2π/3, 3π/4, 4π/5 where
the contribution of the operators O8, O10, O12 vanishes re-
spectively. The fit results for each angle are summarized
in Table 1. The lowest errors are obtained from the 2-
parameter fits at the first two angles. The deviation χ2

0 for
these fits is sufficiently small. For this reason the inclusion
of additional parameters, say O12, will not improve the fit
quality, but will increase the errors only.

The operator values, obtained from the sum rules, are
not independent but have large covariances:

ρij = ∆Oi ∆Oj/((∆Oi)2 (∆Oj)2)1/2.

All fits give ρ6,10 ≈ 1 and ρ6,8 ≈ ρ8,10 ≈ −1. For the 2-
parameter fits the covariances can be demonstrated on the
confidence level plots; see Fig. 3. The equations χ2 = n2 set
the ellipses which are the borders of the nσ deviation area.

One may also try to fit the condensates at all these
angles simultaneously by minimizing χ2

all = 1
3 [χ2(2π/3) +

χ2(3π/4)+χ2(4π/5)]; see the last two lines in the table. As
the final result of our analysis we take this combined fit:

OV −A
6 = − (7.2± 1.2)× 10−3 GeV6,

OV −A
8 = (7.8± 2.5)× 10−3 GeV8,

OV −A
10 = − (4.4± 2.8)× 10−3 GeV10. (18)

The lower limit of the Borel mass in (16) was taken as
M2

1 = 0.4 GeV2 for the first two angles and M2
1 = 0.3 GeV2

for the last one. IfM2
1 is taken by 0.1 GeV2 higher, the errors
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Fig. 3. Confidence level contours, obtained from 2-parameter
fits of the sum rule (15) in the range M2 = 0.4–1 GeV2. The
condensates are in 10−3 GeVD, the contours show 1, 2, 3σ de-
viations of χ2

are increased, especially for the high dimension operators;
see the last line in the table.

The validity of our assumptions is demonstrated in
Fig. 4. If the operator OV −A

10 is taken into account, a good
agreement of theoretical and experimental values is ob-
served for M2 > 0.4 GeV2. Below this value the contri-
bution of the operator O12 could be large. Even better
agreement can be found at the angles where the operator
O12 disappears; see the plots in Figs. 5. Here the fit can
be extended down to M2 = 0.3 GeV2. One may also ob-
tain the condensates by fitting the real part of the Borel
transformation (14). Here the central values of the con-
densates turns out to be close to (18), but the errors are
higher due to the presence of the additional parameter
f2

π . The combined fit of (14) at different angles φ gives
fπ = 131 ± 4 MeV. As pointed out in [4], fπ itself has
an ambiguity of order m2

π/m2
ρ ∼ 3%, the accuracy of the

chiral lagrangian parameters. Notice the sign alternation
in (18), in agreement with the minimal hadronic ansatz for
the ΠV –ΠA correlator, constructed in [7] in the large Nc

limit.
Finally, we write down the values of the quark con-

densate and the parameter m2
0, obtained from the opera-

tors (18):

αs〈q̄q〉2
(
1 + c6

αs

π

)
= (262± 9 MeV)6, (19)

m2
0 = −OV −A

8 /OV −A
6 = 1.1± 0.2 GeV2. (20)

The errors in the RHS are purely experimental: they do
not include a possible contribution of the operator O12
and higher as well as unknown QCD corrections to the
condensates. The factor c6 is scheme dependent and is
left arbitrary in (19). The accuracy of m2

0 is better than
the accuracy of OV −A

8 because of the high covariance of
O6 and O8. Notice the very good agreement of the D =
10 condensate (18) obtained from the sum rules with the
one estimated in the previous section, (13), within the
framework of the factorization hypothesis.
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Fig. 4. Imaginary part of the Borel transformation for φ =
2π/3 (no O8) and φ = 3π/4 (no O10). The shaded area is the
LHS of (15) calculated from the experimental data (with error).
The lines display the operator series in the RHS of (15) with
condensates equal to the central values of (18). The number
nearby each line shows the order of the series; say “8” denotes
the contribution O4 + O6 + O8. The grid shows a possible
contribution of the operator O12 within the limits |OV −A

12 | <
3 × 10−3 GeV12

4 Conclusion

We have performed the analysis of the V –A spectral func-
tions, obtained from hadronic τ -decay channels, with the
help of the Borel sum rules. The values of the condensates of
dimension D = 6, 8, 10 were found, (18), by fitting the the-
oretical curves of the Borel transform to the experimental
ones within its error bands. The major contribution to these
condensates comes from the 4-quark operators. Its contri-
bution to the current correlators was calculated and their
size was estimated by means of the factorization hypoth-
esis. The estimated value of the D = 10 condensate (13)
is found to be in good agreement with the fit result (18),
which demonstrates the validity of the OPE approach in
quantum chromodynamics.

Our results are based on several assumptions; in par-
ticular, the factorization (vacuum insertion) hypothesis.
There is a statement in the literature [26] that the factor-
ization hypothesis underestimates the quartic condensates
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Fig. 5. Imaginary part of the Borel transformation (15) at
φ = 4π/5 and real part (14) at φ = 9π/10. The operator OV −A

12
vanishes in these sum rules

by a factor∼ 3. This conclusion is based on the comparison
of the quark condensate obtained from the D = 6 opera-
tor in ρ-meson (vector) sum rules with the one calculated
from the low energy GMOR theorem. (Our result (19) is
also larger than the GMOR condensate for reasonable the-
oretical parameters.) However this comparison has many
other sources of error, such as a scale-scheme ambiguity,
high-order QCD corrections, light quark masses, correc-
tions from the chiral lagrangian, etc. The accuracy of the
factorization hypothesis can be of the same order as the
ambiguity of the factorization of the D = 8 operators on
the level of O(N−2

c )-terms, as demonstrated in [4]. A more
careful statement about the validity of the factorization hy-
pothesis could be obtained by evaluating the contribution
of the meson states to the 4-quark condensates.

A second objection may concern the rather low value of
the Borel mass M2

1 = 0.4 GeV2 used in our fit (16). Indeed,
the typical scale where perturbative results for the current
correlators are confirmed is Q2 � 1 GeV2. But our result
for the D = 10 operator demonstrates a rather low (power-
like) growth of the operators |O2n+2/O2n| ∼ m2

0 in the V –A
channel. If the operators grow as |O2n| ∼ m2n

0 , then the
Borel series behaves as e−m2

0/M2
. The contribution of the

n+1-term in the exponent is small for M2 	 m2
0/n. So for

n = 5 the minimal scale M2
1 = 0.4 GeV2 seems reasonable.

For a faster growth of the operator series this choice could
be inappropriate. For instance, if one plots the Borel trans-
formation versus M2 with the condensate values obtained
in [9], the divergence of the operator series will be obvious
already at M2 ≈ 0.7 GeV2. However, it should be men-
tioned that the D = 10 condensate obtained there exceeds
our value (13) by an order of magnitude. It seems unlikely
that one could explain such a discrepancy by the inaccuracy
of the factorization. All these assumptions can be confirmed
or disproved only within a non-perturbative approach.

We have neglected the logarithmic terms ∼ lnQ2/Q2n

in the OPE series (3). Such a contribution from the αs
correction to the D = 6 condensate (5) has a small nu-
merical factor; its discontinuity along the real axis Q2 =
−s < 0 is too small to compare with the spectral function
v1(s) − a1(s). For this reason it would be interesting to
calculate the α2

s correction to the D = 6 V –A operator
and the αs correction to the operator OV −A

8 and include
them in the sum rule analysis.
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Appendix A: 4-quark operators

The calculation of the operator contribution to various cur-
rent correlators can be performed within the framework of
the background field method; see for instance [27]. Here
we describe the algorithm, conventions and basic formu-
lae, necessary to calculate the contribution of the 4-quark
condensates to the 2-current correlator, which correspond
to the third diagram of Fig. 2. We also present here the
complete form of the 4-quark operators up to dimension
D = 10. For definiteness we consider only the vector cur-
rent correlator; the condensate contribution to the axial
current correlator is trivially obtained by the substitution
d→ γ5d. The contribution of the 4-quark condensates can
be written as

ΠV
µν(q) = − ig2

4

∫
dx dy dz eiqx

×
〈

Dab
αβ(y, z) [ū(x)γµS(x, y)γαλad(y)

+ū(y)γαλaS(y, x)γµd(x)] (A.1)

× [
d̄(0)γνS(0, z)γβλbu(z)

+d̄(z)γβλbS(z, 0)γνu(0)
]〉

.

Here S(x, y) = 〈Tq(x)q̄(y)〉 is the quark Green function and
Dab

µν(x, y) =
〈
Taa

µ(x)ab
ν(y)

〉
is the gluon Green function in

the background gluon field Aµ → Aµ + aµ. They obey
the equations

iD̂x S(x, y) = iδ4(x− y), (A.2)
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[
D2

xgµα + 2Gµα(x)
]
acDcb

αν(x, y) = iδabgµνδ4(x− y),

(A.3)

where gµν = (+,−,−,−) is the Minkowski metric. The
quarks are massless, the gluon Green function is taken
in the Feynman gauge. The covariant derivative and the
gluon field strength tensor in the fundamental representa-
tion (A.2) are defined as follows:

Dµ = ∂µ − iAµ, Aµ =
g

2
λaAa

µ,

Gµν = i[Dµ, Dν ] =
g

2
λaGa

µν , (A.4)

where the λa are Gell-Mann matrices, tr
(
λaλb

)
= 2δab,

[λa, λb] = ifabcλc. We shall also use an additional com-
pact notation for these objects in the adjoint representa-
tion (A.3):

Dab
µ = ∂µδab+Aab

µ , Aab
µ =

g

2
facbAc

µ, Gab
µν =

g

2
facbGc

µν

(A.5)
It is convenient to perform a partial Fourier transfor-

mation of the Green functions:

S(x, y) =
∫

d4q

(2π)4
e−iq(x−y)S̃(q, y),

Dab
µν(x, y) =

∫
d4q

(2π)4
e−iq(x−y)D̃ab

µν(q, y). (A.6)

Then one can write down the solution of (A.2) and (A.3)
as series in powers of the background field A:

S̃(q, y) = S0(q)
∞∑

n=0

[
iÂ (x̂) S0(q)

]n

, (A.7)

D̃ab
µν(q, y) =

{
D0(q)

∞∑
n=0

[iR (q, x̂) D0(q)]
n

}
ab
µν , (A.8)

where

S0(q) =
iq̂
q2 , D0(q) = − i

q2

are free propagators, x̂ = y− i
−→
∂ , the derivative

−→
∂ = ∂/∂q

acts on everything from the right as [
−→
∂ µ, qν ] = gµν ; R is

the following matrix operator:

Rab
µν (q, x̂)

=
[−iqαAab

α (x̂)− iAab
α (x̂) qα + Aac

α (x̂) Acb
α (x̂)

]
gµν

+2Gab
µν (x̂) . (A.9)

Equations (A.7) and (A.8) can be evaluated in a gauge
covariant way in the fixed point gauge xµAµ(x) = 0, where

Aµ(x) = −
∫ 1

0
dα αxνGµν(αx) (A.10)

= −xν
∞∑

n=0

xα1 . . . xαn

(n + 2)n!
Dα1 . . . Dαn

Gµν(0),

q(x) =
∞∑

n=0

xα1 . . . xαn

n!
Dα1 . . . Dαn

q(0). (A.11)

In order to compute the propagators S̃, D̃ for any fixed
order n, one has to substitute (A.10) into (A.7) and (A.8),
move all the derivatives

−→
∂ to the right and then leave only

the terms without
−→
∂ .

The 4-quark condensate contribution (A.1) can be writ-
ten in terms of the propagators S̃, D̃ as follows:

ΠV
µν(q)

= − ig2

4

[
ū

(
−i
−→
∂

)
γµS̃

(
q,−i
−→
∂

)
γαλad

(
−i
−→
∂

)
×D̃ab

αβ

(
q,−i
−→
∂

)
Xb

νβ(q) + Xb
νβ(q) D̃ba

βα

(
−q,−i

←−
∂

)
× ū

(
−i
←−
∂

)
γαλaS̃

(
−q,−i

←−
∂

)
γµd

(
−i
←−
∂

)]
, (A.12)

where

Xb
νβ(q) = d̄

(
−i
−→
∂

)
γβλbS̃(q, 0)γνu(0) (A.13)

+d̄(0)γν S̃
(
−q,−i

←−
∂

)
γβλbu

(
−i
←−
∂

)
.

In the functions S̃(q, y) and D̃(q, y) the derivatives
−→
∂ ,
←−
∂

over the momentum q always stand on the right from any
function of q: . . . q . . . ∂. The derivatives inside (A.13) do
not act on anything outside Xb

νβ . After these derivatives
are evaluated, we compute the transverse part Π(1) =
−Πµµ/(3q2) defined according to (1). (We also checked that
the longitudinal part vanishes, Π(0) = 0.) And finally, to
separate out the Lorentz invariant condensates, we average
Π(1) over the directions of the vector qµ according to

qµ1 . . . qµ2n = 2
(2n− 1)!!
(2n + 2)!!

(q2)ng(µ1µ2 . . . gµ2n−1µ2n),

qµ1 . . . qµ2n+1 = 0, (A.14)

where (µ1 . . . µn) denotes the usual index symmetrization
with weight 1/n!. All these calculations were performed
by computer.

The most time-consuming part of the calculation is
to reduce the large number of terms in the final result
to a minimal number of independent structures. For this
purpose we employ the quark equation of motion D̂u =
D̂d = 0 and the “integration by part” identity 〈A(DµB)〉 =
−〈(DµA)B〉 (the vacuum average of the total derivative is
zero 〈∂xO(x)〉 = ∂x〈O(x)〉 = ∂x〈O(0)〉 = 0 for any gauge
invariant operator O(x)). It allows one to bring the oper-
ators to obviously hermitean (real) form, which provides
an additional verification of the result.

In order to write down the 4-quark condensates in a
compact form, we introduce here the following bilinear
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quark structures of increasing dimension D:

3D : Aα = d̄λγ5γαu,

4D : B
(1)
αβ = i

(
d̄λγαuβ − d̄βλγαu

)
,

B
(2)
αβ = d̄λγ5γαuβ + d̄βλγ5γαu,

5D : C
(1)
αβγ = i

(
d̄λγαuβγ − d̄βγλγαu

)
,

C
(2)
αβγ = d̄λγ5γαuβγ + d̄βγλγ5γαu,

C
(3)
αβγ = d̄αλγ5γβuγ + d̄γλγ5γβuα,

C
(4)
αβγ = d̄{λ, Gαβ}γγu,

6D : E
(1)
αβγδ = d̄{λ, Gαβ}γγuδ + d̄δ{λ, Gαβ}γγu,

E
(2)
αβγδ = d̄{λ, G̃αβ}γγuδ + d̄δ{λ, G̃αβ}γγu,

E
(3)
αβγδ = i

(
d̄{λ, Gαβ}γ5γγuδ − d̄δ{λ, Gαβ}γ5γγu

)
,

E
(4)
αβγδ = i

(
d̄{λ, G̃αβ}γ5γγuδ − d̄δ{λ, G̃αβ}γ5γγu

)
,

E
(5)
αβγδ = d̄{λ, Gβγ; α}γδu,

E
(6)
αβγδ = d̄{λ, G̃βγ; α}γδu,

7D : F
(1)
αβγ = i

(
d̄{λ, Jα}γ5γβuγ − d̄γ{λ, Jα}γ5γβu

)
,

F
(2)
αβγ = d̄{λ, {Gαδ, Gδβ}}γ5γγu,

F
(3)
αβγ = id̄{λ, [Gαδ, G̃δβ ]}γγ u,

(A.15)
where uα = Dαu, uαβ = D(αDβ)u ≡ 1

2 (DαDβ +DβDα)u,
Gβγ; α = DαGβγ , Jα = DβGαβ , [A, B] = AB − BA,
{A, B} = AB + BA. The dual tensor is defined by G̃αβ =
1
2 εαβµνGµν , ε0123 = 1 and γ5 = iγ0γ1γ2γ3. The values G,
G̃, J in (A.15) are in the fundamental representation. All
bilinear structures belong to the adjoint representation of
the gauge group, and the gauge index of the Gell-Mann
matrices λ is omitted. We denote conjugated structures
by overlined letters, which are simply obtained by the re-
placement u � d, for instance Āα ≡ A†

α = ūλγ5γα d.
The 4-quark condensates of dimension D = 6, 8, 10 are

OV
6 = −2παs

〈
ĀαAα

〉
, (A.16)

OV
8 =

2παs

9

×
〈
−4B̄

(1)
αβ B

(1)
αβ − B̄

(2)
αβ B

(2)
αβ

−4C̄
(3)
βαβAα − 4ĀαC

(3)
βαβ + 12ĀαGαβAβ

〉
, (A.17)

OV
10 =

παs

9

〈
25C̄

(1)
αβγC

(1)
αβγ − 5C̄

(2)
αβγC

(2)
αβγ − 10C̄

(3)
αβαC

(3)
γβγ

−19C̄
(4)
αββC(4)

αγγ −
15
4

C̄
(4)
αβγC

(4)
αβγ − 8C̄

(4)
αβγC

(4)
βγα

−2B̄
(1)
αβ GβγB(1)

αγ − 66B̄
(2)
αβ GαγB

(2)
γβ

+Āα

(
8J[α; β] − 3GαγGγβ + 19GβγGγα

)
Aβ

+
33
4

ĀαGβγGβγAα

+B̄
(1)
αβ

(
E

(1)
βγαγ +

5
2

E
(4)
αγγβ −

7
2

E
(5)
γβγα − 28G̃βγB(2)

αγ

+
21
2

G̃βγ; αAγ

)
+

(
Ē

(1)
βγαγ +

5
2

Ē
(4)
αγγβ −

7
2

Ē
(5)
γβγα

+28B̄(2)
αγ G̃βγ − 21

2
ĀγG̃βγ; α

)
B

(1)
αβ

+B̄
(2)
αβ

(
− 11

2
E

(2)
αγγβ +

15
4

E
(2)
βγαγ +

5
2

E
(3)
αγβγ + 5E

(3)
βγαγ

+
1
2

E
(6)
αβγγ +

3
2

E
(6)
βαγγ − 4E

(6)
γαβγ

− 17
2

Gαβ; γAγ − 11JβAα

)

+
(
− 11

2
Ē

(2)
αγγβ +

15
4

Ē
(2)
βγαγ (A.18)

+
5
2

Ē
(3)
αγβγ + 5Ē

(3)
βγαγ +

1
2

Ē
(6)
αβγγ +

3
2

Ē
(6)
βαγγ

−4Ē
(6)
γαβγ +

17
2

ĀγGαβ; γ + 11ĀαJβ

)
B

(2)
αβ

+Āα

(
−3F

(1)
βαβ + F

(1)
ββα + 2F

(2)
αββ −

1
2

F
(2)
ββα + F

(3)
(αβ)β

− 45
2

G̃αβC
(4)
βγγ +

35
2

G̃βγC
(4)
αβγ +

75
8

G̃βγC
(4)
βγα

)

+
(
−3F̄

(1)
βαβ + F̄

(1)
ββα + 2F̄

(2)
αββ −

1
2

F̄
(2)
ββα + F̄

(3)
(αβ)β

+
45
2

C̄
(4)
βγγG̃αβ − 35

2
C̄

(4)
αβγG̃βγ − 75

8
C̄

(4)
βγαG̃βγ

)
Aα

〉
.

In (A.17) and (A.18) the field strengths G, G̃, J are in the
adjoint representation Gab

αβ = g
2 facbGc

αβ etc.; gauge indices
are omitted; say ĀαGβγGβγAα denotes Āa

αGab
βγGbc

βγAc
α. The

operator OV
8 (A.17) can be easily brought to the form

obtained in [4, 19].

Appendix B:
Factorization of 4-quark condensates

At first let us recall how the factorization (vacuum inser-
tion) works for the D = 6 operators. This is illustrated by
the following equation:

〈(ūλΓ1d)(d̄λΓ2u)〉 = −2 CN tr
[〈u⊗ ū〉Γ1〈d⊗ d̄〉Γ2

]
,

(B.1)
where Γi are some Dirac matrices, CN = 1−1/N2

c , Nc is the
color number, kept arbitrary here. In (B.1) the notation 〈q⊗
q̄〉 denotes a 4× 4 matrix in spinor space; the color indices
are contracted. It is proportional to the quark condensate:

〈q ⊗ q̄〉 = − 1
4
〈q̄q〉. (B.2)
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The result of the factorization is well known:

OV
6 = −4παsCN 〈ūu〉〈d̄d 〉. (B.3)

(In the vector sum rules one also accounts for the additional
operator 〈q̄γαJαq〉, which takes the 4-quark form when
the gluon equation of motion is applied. Such an operator
comes from the 2-quark diagram, so it cancels in the V –
A correlators.)

The factorization procedure becomes ambiguous at the
level of D = 8 4-quark condensates. As shown in [4], dif-
ferent ways of factorization give different terms ∼ 1/N2

c .
For definiteness, here we follow the following factoriza-
tion scheme. At first we replace the field strength by the
derivatives as follows: Gµν = i[Dµ, Dν ] for the fundamen-
tal representation and Gab

µν = [Dµ, Dν ]ab for the adjoint
one. Then we apply (B.1), where the quark wave functions
u, ū and d, d̄ may carry some derivatives. Finally, the quark
matrices 〈. . .〉 with derivatives are expressed in terms of
the condensates as

〈Dαq ⊗ q̄〉 = 0, (B.4)

〈DαDβq ⊗ q̄〉 = − 1
32

(
gαβ +

1
3

γαβ

)
i〈q̄Ĝq〉,

where γαβ = γ[αγβ] = 1
2 (γαγβ − γβγα), Ĝ = γαβGαβ . The

result for the D = 8 condensate is

OV
8 = −2παsCN

[
〈ūu〉 i〈d̄Ĝd〉 + 〈d̄d〉 i〈ūĜu〉

]
. (B.5)

In the condensate O10 one encounters the terms with
quarks carrying four derivatives. We average these terms
with the help of the following rule:

〈DαDβDγDδq ⊗ q̄〉

= − 1
242

[
gαβgγδ(3X2 + 6X3 − 2X4)

+gαγgβδ(6X1 + 3X2 + 6X3 + 4X4)

+gαδgβγ(12X1 + 3X2 + 6X3 + 4X4)

+(gαβγγδ + gγδγαβ)(X1 + 2X2 + 3X3)

+(gαγγβδ + gβδγαγ)(2X1 + X2 + 3X3 + X4)

+gαδγβγ(X1 + 2X2 + X4) + gβγγαδ(X1 + X4)

+3γαβγδX2
]
, (B.6)

where γαβγδ = γ[αγβγγγδ], and Xi are 7-dimensional con-
densates, defined in (10).

Having been applied to the operator (A.18), this pro-
cedure gives the following result:

OV
10 = παsCN

×
[

25
9
〈ūĜu〉〈d̄Ĝd〉 − 4

(
3Xu

1 −Xu
2 + Xu

3 +
7
6

Xu
4

)
〈d̄d〉

−4
(

3Xd
1 −Xd

2 + Xd
3 +

7
6

Xd
4

)
〈ūu〉

]
, (B.7)

where the Xq
i are constructed from the quark of flavor

q. The axial condensates can be obtained by the simple
replacement d → γ5d. For all factorized 4-quark opera-
tors OA

D = −OV
D.
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